Ya. L. Kolomov, A. N. Solov'ev, and E. P. Sheludyakov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 9, No. 2, pp. 141-145, 1968

As shown in [1, 2], a very promising method of constructing the entropy diagrams for unfamiliar substances, such as most freons, is that based on the speed of sound and density.

However, there are no data on the speed of sound in freons. The existing data on the speed of sound in the superheated vapors of other substances usually embrace regions located either to the right-hand side or to the left-hand side of the maximum in the saturated vapor (in speed of sound-temperature coordinates). However, to get a clear picture of the dependence of the speed of sound on the parameters of state we need data in both these regions at the same time. Accordingly, we have measured the speed of sound in saturated and superheated freon-11 (CF₃Cl) vapor over a broad range of the parameters of state.

An apparatus for measuring the speed of sound in water and mercury vapor using standing waves in a resonator was described in [3, 4]. On the basis of this apparatus we designed a special system for investigating the speed of sound in saturated and superheated freon vapor. The temperature range was considerably expanded, the control of the temperature field improved, and the accuracy of the temperature. pressure, and frequency measurements refined. The transducers, the resonator, the autoclave and the general block diagram remained essentially as before. In order to cover a broad temperature range (from -40 to +400° C) the apparatus was divided into three sections: the first for operating at temperatures from -40 to $+20^{\circ}$ C, the second for 20-200° C, and the third for 200-400° C. In the first and third sections, the autoclave containing the resonator was placed in a horizontal copper block 770 mm long, with inside and outside diameters of 100 and 150 mm, respectively. Five differential thermocouples were positioned along the length of the copper block to monitor the uniformity of the temperature field.

In the first section, the autoclave and the surrounding copper sleeve were surrounded by thermal insulation. By means of a special funnel, liquid nitrogen is introduced into the space between the insulation and the copper block to obtain negative temperatures. The temperature was regulated and equalized by varying the amount of nitrogen introduced, and also by means of a series of electric heaters distributed along the length of the block. In the third section, one main and several auxiliary electric heaters, intended for equalizing the temperature field, were wound along the length of the copper block. A layer of asbestos served to insulate the apparatus from the ambient medium.

In working with the first and third sections, the maximum temperature difference between different points on the copper block did not exceed $0.1-0.2^{\circ}$ C. In the second section, the autoclave and resonator were arranged vertically and placed in an oil bath. The autoclave temperature was equalized by stirring the oil. Each section was monitored by the filling and pressure-measuring system.

The temperature in the autoclave was measured with a platinum resistance thermometer or a set of mercury thermometers graduated in 0.1° C. Pressures below atmospheric were measured with a class 0.5 reference vacuum gauge with a correction for barometric pressure.

Pressures above atmospheric were measured with a class 0.05 MP-60 plunger manometer combined with a reference manometer. The latter served to cover the interval between adjacent pressure values corresponding to two neighboring values of the standard weights of the plunger manometer. Structurally, the differential manometer consisted of a chamber with a viewing window connected with the plunger manometer and, inside the chamber, a class 0.35 reference manometer connected with the autoclave. Before the test substance was introduced, the entire system was carefully flushed and evacuated to a pressure of 10^{-2} mm Hg.

The speed of sound was measured as tollows. By varying the frequency of the af oscillator, we obtained 10-15 maxima on the oscillograph, each of which corresponded to a standing wave. In our case, the mea-

surements were made principally at frequencies from 1000 to 2000 Hz. The frequency was measured with a ChZ-4 frequency meter. The speed of sound was determined from the formula

$$c = \frac{2Li}{n} \tag{1}$$

Table 1 Speed of Sound c (m/sec) in Saturated Freon-11 Vapor as a Function of Temperature t (C)

•			:		· · · /
t	c	t	с	t	с
$\begin{array}{c} -40.0 \\ -35.0 \\ -30.0 \\ -20.0 \\ -20.0 \\ -15.0 \\ -10.0 \\ -5.0 \\ 0.0 \\ 5.0 \\ 10.0 \\ 20.0 \\ 30.0 \end{array}$	126.0 127.1 128.2 129.1 130.0 130.9 131.8 132.7 133.6 134.4 135.2 136.7 137.8	40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 125.0 130.0 136.0 140.0	138.6 139.2 139.5 139.5 139.2 138.5 137.4 136.2 134.3 133.2 132.0 130.5 128.8	145.0 150.0 155.0 160.0 170.0 175.0 180.0 185.0 190.0 195.0 196.0 197.0 193.0	$\begin{array}{c} 127.0\\ 125.0\\ 122.6\\ 120.2\\ 117.6\\ 114.7\\ 113.1\\ 107.7\\ 103.5\\ 98.8\\ 93.5\\ 92.4\\ 90.2\\ 87.0\\ \end{array}$

Table 2

Speed of Sound c (m/sec) in Superheated Freon-11 Vapor on Isotherms t (°C) as a Function of the Pressure p (kgf/cm²)

		<u>, , , , , , , , , , , , , , , , , , , </u>			
p	c	p	l c	p	с
t == 193.0		t = 153.8		t = 50.9	
$0\\4.0\\8.0\\12.0\\16.0$	177.1 172.4 167.3 161.9 156.5	0 4.0 8.0 12.0 16.0	168.8 162.6 155.8 148.3 140.0	$ \begin{array}{c} 0.0 \\ 1.0 \\ 2.0 \\ 2.3 \end{array} $	147.9 144.7 140.9 139.2
20.0 24.0	150.5 143.7	20.0	130.3	t ==	35.6
28.0 32.0 36.0	136.7 128.8 120.1	22.15 t ==	124.2 139.3	0.0 0.5 1.0	144.6 143.9 141.5
40.0 42.0 43.0 44.0	102.6 97.5 89.5	0 4.0 8.0	166.0 159.3 151.8	1.5	138.3
44.15	87.0	12.0 16.0	143.3	t=	20.0
t = 0	195.0	17.65	129.4	0.15	140.8
4.0 8.0 12.0 16.0 20.0 24.0 28.0	176.6 171.8 166.6 161.2 155.7 149.8 143.0 135.8	t = 1 0.0 4.0 8.0 10.0 12.0 13.4	24.3 163.1 155.8 147.2 142.5 137.3 133.6	0.30 0.45 0.60 0.75 0.85 0.90	140.4 140.0 139.3 138.4 137.4 136.9
32.0 36.0	127.7 120.1	t = 10	09.5	0.0	10.0
$\begin{array}{c c} 38.0 \\ 40.0 \\ 41.0 \\ 42.0 \\ 42.6 \\ t = 1 \\ 0 \\ t = 1 \end{array}$	115.2 109.8 101.0 96.3 93.6 90.0 175.6	0 1.0 3.0 5.0 7.0 9.0 10.2	160.1 158.5 154.6 150.0 145.0 139.5 136.2	$\begin{array}{c} 0.10\\ 0.20\\ 0.30\\ 0.40\\ 0.50\\ 0.60\\ 0.62 \end{array}$	138.6 138.4 138.2 137.8 137.1 135.7 135.1
$\frac{4.0}{8.0}$	170.6 167.3	t == 1	99.1	t ===	0.0
12.0 16.0 20.0 24.0 28.0 32.0 36.0	159.8 154.1 147.8 140.7 133.1 124.1 112.8	0.0 2.0 4.0 6.0 7.0 8.2	158.0 153.9 149.2 143.8 141.0 137.5	0.0 0.10 0.20 0.30 0.40 0.41	136.3 136.2 135.9 135.4 133.9 133.4
38.0 39.0	106.2 101.8	t === 3	84.8	t = -	-10.0
$\begin{array}{c c} 39.45 \\ t = 1 \\ 0 \\ 4.0 \\ 8.0 \\ 12.0 \\ 16.0 \end{array}$	99.2 80.0 173.8 168.3 162.5 156.7 150.4	$\begin{array}{c} 0.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 4.0 \\ 5.0 \\ 6.0 \end{array}$	155.0 153.0 150.7 148.2 145.5 142.4 138.9	0.0 0.10 0.15 0.20 0.25 0.26	134.0 133.8 133.6 133.2 132.3 131.8
$20.0 \\ 24.0$	143.3	t = 6	59.6	<i>t</i> == -	-20.0
$ \begin{array}{c c} 28.0 \\ 32.0 \\ 33.0 \\ 34.0 \\ t = 10 \end{array} $	125.4 114,2 111.2 108.1 68.0	$\begin{array}{c} 0.0 \\ 1.0 \\ 2.0 \\ 3.0 \\ 4.0 \\ 4.1 \end{array}$	157.9 149.7 147.1 143.7 139.8 139.5	0.05 0.10 0.15 0.16	131.5 131.4 131.2 130.6 130.0
0 4.0	171.4	t == (61.6	t = -	-30.0
$ \begin{array}{c} 8.0\\ 12.0\\ 16.0\\ 20.0\\ 24.0\\ 26.0\\ 28.15 \end{array} $	159.5 152.9 145.5 137.2 127.7 132.4 116.3	0.0 1.0 2.0 3.0 3.3	150.2 147.6 144.5 140.8 139.5	0.0 0.025 0.05 0.075 0.094	129,1 129,1 129,0 128,8 127,9

where c is the speed of sound in m/sec, L is the distance between the speaker and the microphone diaphragms in m, f the frequency of the sound waves in Hz, and n the number of half-waves in the resonator.

The distance L was determined from the speed of sound in air. The air was first passed through silica gel to remove traces of moisture. The distance L was then found to be 553 mm. This value was also used in the calculations. The speed of sound in air was calculated from the formula c = 20.0067 $T^{1/2}$. The distance L was also measured directly and found to be 551.5 mm. The values of f/n obtained at different frequencies were averaged. The maximum deviation may be 1% and sometimes slightly more. However, as a rule the mean deviation does not exceed 0.3-0.5%. In order to obtain thermodynamic equilibrium, before the measurements were made the temperature in the autoclave was kept constant to within 0.1° C for 20-30 min. The freon-11 was subjected to a chromatographic analysis. No impurities were found. The speed of sound was measured on the apparatus for the temperature interval from -40 to +200° C and on the pressure interval from 0.05 to 43 kg/cm². Altogether 200 experimental points were recorded. Measurements of the speed of sound only in the superheated vapor were made along the isotherms. Graphic interpolation was used in analyzing the data. The mean deviation was 0.4%. From a previously obtained theoretical formula [5], we calculated values of the speed of sound in the saturated vapor which coincided with the measured values correct to 1%. The results for saturated vapor are presented in Table 1, those for superheated vapor in Table 2.

The results were used to calculate the entropy of freon-11 by the method described in [1]. It was found that the starting points of the isentropes for freons cannot be taken on the saturation line, as recom-

Table 3

Values of the Entropy S (kJ/kgf \cdot deg) for Freon-11 on Isobars p (kgf/cm²) as a Function of the Temperature t (°C)

				1	
t	s	t	S	t	s
p = 0.0703		p = 0.6327		p = 3.515	
$p = -\frac{-35.0}{-30.0} -\frac{-35.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20.0} -\frac{-22.56}{-22.00} -\frac{-10.0}{-10.0} -\frac{-22.56}{-22.00} -\frac{-10.0}{-10.0} -\frac{-30.0}{-20.0} -\frac{-30.0}{-20$	0.0703 0.8657 0.8762 0.8972 0.9181 0.9388 0.9585 0.9780 0.9755 1.0160 1.0346 1.0531 1.0707 0.1406 0.8498 0.8558 0.8776 0.9775 1.0160 1.0531 1.0707 0.1406 0.8498 0.8558 0.8778 0.9912 0.9386 0.9554 0.9554 0.9912 1.0091 1.0538 0.9558 0.8738 0.8940 0.9172 0.9912 1.0538 0.8564 0.8738 0.8940 0.9134 0.9325 0.9326 0.9325 0.9325 0.9326 0.9325 0.9326 0.9326 0.9326 0.9326 0.9326 0.9325 0.9326 0.9326 0.9325 0.9326 0.9326 0.9326 0.9326 0.9326 0.9326 0.9326 0.9326 0.9325 0.9326 0.9325 0.9326 0.9325 0.9326 0.9325 0.9326 0.9326 0.9326 0.9325 0.9326 0.9326 0.9325 0.9326 0.9325 0.9326 0.9325 0.9326 0.9326 0.9326 0.9325 0.9326	$p = \frac{p}{10.56}$ 10.56 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 120.0 120.0 120.0 140.0 145.0 $p = \frac{22.33}{30.0}$ 40.0 50.0 60.0 100.0 110.0 120.0 120.0 150.0 165.0 $p = \frac{35.61}{40.0}$ 50.0 60.0 110.0 145.0 $p = \frac{35.61}{40.0}$ 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.	$\begin{array}{c} 0.6327\\ 0.6327\\ 0.8251\\ 0.8451\\ 0.8637\\ 0.8817\\ 0.8817\\ 0.931\\ 0.9510\\ 0.9685\\ 0.9650\\ 0.9685\\ 0.9680\\ 1.0024\\ 1.0171\\ 1.0310\\ 1.0615\\ 0.9842\\ 0.8200\\ 0.8355\\ 0.8905\\ 0.8905\\ 0.8905\\ 0.9080\\ 0.9255\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9426\\ 0.9602\\ 0.9767\\ 1.0369\\ 1.0230\\ 1.0369\\ 1.0491\\ 1.0550\\ 1.0491\\ 1.0550\\ 1.546\\ 0.8465\\ 0.9462\\ 0.9995\\ 2.249\\ 0.8146\\ 0.8490\\ 0.9995\\ 2.249\\ 0.8146\\ 0.8490\\ 0.8380\\ 0.8446\\ 0.8490\\ 0.8380\\ 0.8446\\ 0.8380\\ 0.8446\\ 0.8380\\ 0.8446\\ 0.8380\\ 0.8446\\ 0.8380\\ 0.8446\\ 0.8380\\ 0.8$	p = 3 63.50 70.0 80.0 90.0 100.0 110.0 120.0 130.0 140.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 160.0 160.0 160.0 160.0 170.0 180.0 p = 5 97.2 100.0 110.0 120.0 1	.515 0.8133 0.8266 0.8450 0.8650 0.9812 0.99160 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9916 0.9961 0.9961 0.8426 0.8426 0.8426 0.8426 0.8426 0.8426 0.8426 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.99528 0.8130 0.8326 0.9324 0.8313 0.63528 0.93528 545 0.83129 0.8313 0.85545 0.83528 0.93528 545 0.85545 0.85528 0.99528 545 0.85528 0.99528 545 0.85545 0.85528 0.99528 0.99528 0.85545 0.85528 0.99528 0.85545 0.85528 0.95558 0.95558 0.95558 0.95558 0.95568 0.95568 0.95568 0.95568 0.95568 0.95
70.0 80.0 90.0 100.0 110.0 120.0 130.0	0.9596 0.9773 0.9946 1.0113 1.0271 1.0419 1.0555	70.0 80.0 90.0 110.0 120.0 130.0 140.0 150.0 160.0	$ \begin{array}{c} 0.8562\\ 0.8735\\ 0.8902\\ 0.9066\\ 0.9220\\ 0.9375\\ 0.9530\\ 0.9680\\ 0.9830\\ 0.9830\\ 0.9974 \end{array} $	$\begin{array}{c} 195.0\\ p == 14\\ 125.61\\ 130.0\\ 140.0\\ 150.0\\ 160.0\\ 170.0 \end{array}$	0.9504 060 0.8121 0.8204 0.8381 0.8548 0.8548 0.8705 0.8855
		1 10010	0.0011		0.0000

Table	4
-------	---

Values of the Entropy S (kJ/kgf·deg) for Freon-11 on Isochores v (m^3/kgf) as a Function of the Temperature t($^{\circ}$ C)

t	s	t	s	t	s
v = 2.0826		n = 0.27056		n = 0.05426	
$\begin{array}{c} -35.0 \\ -30.0 \\ -20.0 \\ -10.0 \\ 0 \\ 10.0 \\ 20.0 \\ 30.0 \\ 40.0 \\ 50.0 \\ 60.0 \\ 75.0 \\ 75.0 \end{array}$	0.8657 0.8750 0.8939 0.9127 0.9305 0.9478 0.9553 0.9820 0.9985 1.0145 1.0305 1.0457 1.0457	$\begin{array}{c} 10.56\\ 10.56\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 110.0\\ 120.0\\ 130.0\\ 140.0\\ 150.0\end{array}$	0.8251 0.8420 0.8586 0.8751 0.9082 0.9250 0.9406 0.9370 0.9370 0.9370 0.9365 1.0010 1.0136 1.0265	$\begin{array}{c} 63.50\\ 770.0\\ 80.0\\ 90.0\\ 100.0\\ 110.0\\ 120.0\\ 130.0\\ 140.0\\ 150.0\\ 160.0\\ 170.0\\ 180.0\\ 190.0\\ \end{array}$	$\begin{array}{c} 0.8133\\ 0.8240\\ 0.8576\\ 0.8576\\ 0.8576\\ 0.8576\\ 0.9013\\ 0.9154\\ 0.9242\\ 0.9283\\ 0.9721\\ 0.9854\\ 0.9985 \end{array}$
-22.56	0.8498	160.0	1.0505	v = 0.0	3449
$\begin{array}{c} -20.0 \\ -20.0 \\ -10.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0.3549 0.8746 0.8746 0.9035 0.9035 0.9263 0.9433 0.9600 0.9775 0.9940 1.0100 1.0262 1.0447 0.8368 0.8520 0.8520 0.8520 0.8567 0.9017 0.9495 0.9495 0.9495 0.9657 0.9820 0.9820 0.9820 0.9822 1.0124 1.0262 1.0262 1.0263 0.9495 0.9657 0.9820 0.0982 0.0982 0.0957 0.98200 0.98200 0.98200000000000000000000000000000000000	$\begin{array}{c} v = \theta \\ 22, 33 \\ 30.0 \\ 40.0 \\ 50.0 \\ 90.0 \\ 90.0 \\ 100.0 \\ 110.0 \\ 120.0 \\ 130.0 \\ 140.0 \\ 140.0 \\ 35.61 \\ 40.0 \\ 50.0 \\ 50.0 \\ 60.0 \\ 70.0 \\ 70.0 \\ 80.0 \\ 90.0 \\ 100.0 \\ 110.0 \\ 120.0 \\ 130.0 \\ 140.0 \\ 150.0 \\ 160.0 \\ \end{array}$.17942 0.8200 0.8935 0.8500 0.8658 0.8818 0.9878 0.9140 0.9295 0.9450 0.9450 0.9450 0.9596 1.0018 1.10774 0.8167 0.8247 0.8585 0.8743 0.8585 0.8743 0.8055 0.9055 0.9205 0.9205 0.9205 0.9205 0.9407 0.9437 0.9915 0.9935	$\begin{array}{c} 32.11\\ 90.0\\ 100.0\\ 110.0\\ 120.0\\ 130.0\\ 160.0\\ 160.0\\ 160.0\\ 170.0\\ 170.0\\ 170.0\\ 170.0\\ 170.0\\ 170.0\\ 170.0\\ 140.0\\ 120.0\\ 140.0\\ 120.0\\ 140.0\\ 150.0\\ 160.0\\ 190.0\\ 100$	0.8129 0.8256 0.8426 0.8375 0.8375 0.8374 0.9375 0.9374 0.93870 0.94159 0.9296 0.9368 0.9568 0.9568 0.9425 0.8374 0.8384 0.9485 0.8457 0.8394 0.8457 0.8394 0.8457 0.8454 0.8454 0.8454 0.8454 0.8454 0.8454 0.8454 0.9425 0.9465
$\begin{array}{c} 0.67\\ 10.0\\ 20,0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 110.0\\ 110.0\\ 120.0\\ 130.0\\ 140.0\\ 145.0\\ \end{array}$	$\begin{array}{c} 0.8305\\ 0.8482\\ 0.8670\\ 0.8840\\ 0.9004\\ 0.9157\\ 0.9311\\ 0.9624\\ 0.9777\\ 0.9926\\ 1.0065\\ 1.0196\\ 1.0320\\ 1.0643\\ 1.0443\\ 1.0570\\ \end{array}$	$\begin{array}{c} v = 0, \\ 47.67 \\ 50.0 \\ 60.0 \\ 70.0 \\ 80.0 \\ 90.0 \\ 100.0 \\ 110.0 \\ 120.0 \\ 130.0 \\ 140.0 \\ 150.0 \\ 150.0 \\ 160.0 \\ 170.0 \\ \end{array}$	0.8278 0.8146 0.8185 0.8356 0.8356 0.8356 0.8524 0.8686 0.8333 0.8990 0.9136 0.9282 0.9430 0.9430 0.9566 0.9708 0.9344 0.9945	130.0 140.0 150.0 160.0 165.0	0.8420 0.8565 0 8695 0.8820 0.8827

mended in [1], since, in t-s coordinates, the saturation line is too steep. Therefore, as starting points, it was necessary to take values of the entropy on one of the isobars. It is simplest to do this for the isobar corresponding to the lowest pressure; in this case, the gas is close to perfect and the entropy calculation presents no difficulties. As starting values we took the entropy values on the 0.0703 kg/cm^2 isobar [6]. From the data on the speed of sound and density data taken from [6] we calculated values of the entropy for pressures up to 14 kg/cm². The results are presented in Tables 3 and 4. The calculated values of the entropy differ from the known values [6] by not more than 0.5% over the entire region of the parameters of state.

REFERENCES

1. I. I. Novikov and Yu. S. Trelin, "Construction of entropy diagrams from experimental data on the speed of sound," Atomnaya energiya, vol. 10, no. 5, 1961.

2. I. I. Novikov and E. P. Sheludyakov, "Thermodynamic t-s graph for mercury constructed from experimental data on the speed of sound," PMTF [Journal of Applied Mechanics and Technical Physics], no. 2, 1966.

3. V. I. Avdonin, I. I. Novikov, and E. P. Sheludyakov, "Experimental determination of the speed of sound in saturated water vapor at high pressures," PMTF, No. 5, 1964.

4. I. I. Novikov and E. P. Sheludyakov, "Speed of sound in saturated and superheated mercury vapor," collection: High-Temperature Research [in Russian], Izd-vo Nauka, 1966. 5. A. N. Solov'ev and E. P. Sheludyakov, "Sump in the thermodynamic speed of sound and determination of some parameters of the saturated vapor," PMTF [Journal of Applied Mechanics and Technical Physics], no. 3, 1967. 6. Fundamentals and Equipment, ASHRAE, New York, 1965.

19 September 1967

Novosibirsk